LMW
LMW

Do you want to advertise here? Contact us

Imtex
Imtex

Do you want to advertise here? Contact us

OEM Update
.

Welding of High Temperature Alloys

By July 21, 2011 7:36 am IST

This article gives an overview about welding of high temperature alloys. When we speak about high temperature alloys than we can say, these are alloys which will be applied at service temperatures above 500 °C.
This article gives an overview about welding of high temperature alloys. When we speak about high temperature alloys than we can say, these are alloys which will be applied at service temperatures above 500 °C. The service temperature range in which the common high temperature alloys are applied is shown in Fig. 1.
Typical ApplicationsTypical applications for HT alloys are in thermal power plants, furnaces and ovens, in waste incineration, chemical and petrochemical plants and gas turbines. As in general higher operation temperatures in process plants give a higher efficiency, research is done to increase the maximum service temperature of the engineering alloys. In recent years, for example, in the ferritic martensitic Cr-Mo creep resistant steel family alloy P92 was developed and in the high temperature nickel base family alloy 602CA.
Requirements for HT AlloysThe maximum allowed service temperature for high temperature alloys is given by their physical and metallurgical properties as: creep resistance, high temperature-hot gas corrosion resistance (oxidation resistance, resistance to carburization, sulphidation), thermal conductivity, thermal fatigue and thermal shock resistance. For engineering calculations of components up to about the recristallisation temperature (Tk ~ 0.4*Ts, in °K), the  hot tensile strength is used and above Tk  the creep rupture strength is used. For standard engineering alloys the melting temperature is about 1,400° C, i.e. about 1,673° K. This means above Tk=670° K, i.e. 400° C for calculations the creep rupture strength should be used. But with special alloying elements this temperature can be increased to about 600° C in some high temperature nickel base alloys. 
Temperature Ranges for CalculationIn Fig. 2 the temperature range, up to which the short time temperature strength can be used (up to about 510° C), is indicated. Above 510° C for alloy 600H the long time creep rupture strength has to be used for calculation. In [1] K. Drehfahl gives details for the designing of components exposed to high temperatures.
The creep rupture strength of different engineering alloys is given in Fig. 3. This figure also indicates in which temperature range special HT alloys can be used with respect to their creep rupture strength. Special high temperature austenitic stainless steels can be used up to 750 °C. Above 750 °C is the special temperature range for the application of nickel base alloys. But not only the creep rupture strength but the high temperature or hot gas corrosion resistance has to be considered for the selection of a HT-alloy for special service applications. Some explications about mechanical testing of HT-alloys
Mechanical Tests for HT AlloysAs already mentioned the creep rupture strength, in general after 100.000h, is the strength used for engineering calculations of components exposed to high temperatures.
Creep Rupture TestsTo determine the creep rupture strength, tensile specimens are put in an oven and loaded with a given weight. Then the time until rupture is determined. Measured rupture times up to 30.000 h are required to extrapolate up to the creep rupture strength Rm for 100.000 h (~11 years) rupture time. This means these tests are very time consuming and expensive. An extrapolation with Larson-Miller diagrams allow to determine the creep rupture strength from higher temperature short time results to ‘lower’ temperatures and longer times. Figure 4 gives a comparison of HT alloys in a Larson-Miller diagram.
To determine the long time ductility, samples of the HT-Alloy to be tested are aged over a given time period at a given temperature in an oven. After that time, impact specimens are machined from these samples and tested at room temperature. Graphs, with a series of results for different temperatures and different times, indicate at which temperatures and after which times precipitations, lowering the ductility, will occur.   In Fig. 5 long time ductility tests for weld metals ERNiCr-3 are shown.
Welding of HT AlloysFor the selection of filler metals to weld HT-alloys the following requirements have to be taken into account:• Creep rupture strength• High temperature long time ductility• High temperature or hot gas corrosion resistance• Thermal expansion coefficient
In general it can be said that HT-alloys have to be welded with matching filler metals. This is not in each case possible, as not always matching filler metals exist and as matching filler metals for some HT-alloys require slight modification to give improved ductility. For some HT-alloys the matching filler metal would be prone to hot cracks. Also, it has to be taken into account that the weld deposit shows a micro structure more similar to castings than to hot rolled plates or pipes.

Advertising

OEM Android App

Your future advertising space? Our media data

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags:
Autodesk
Autodesk
OEM Update QR Code
OEM Update QR Code

Events

Logimat India
Logimat India
Hannover Messe 2025
Hannover Messe 2025
Diemex
Diemex
Metal Forming Expo
Metal Forming Expo
ChemProTech India 2025
ChemProTech India 2025
Aerodef India Manufacturing Expo
Aerodef India Manufacturing Expo
Wiretech 2025
Wiretech 2025
India Manufacturing Show
India Manufacturing Show

eMagazine January 2025

eMagazine January 2025
eMagazine January 2025

Do you want to advertise here? Contact us

Our Sponsors

Bluestar
Bluestar
Pragati Gears
Pragati Gears
Pilz India
Pilz India
Carl Zeiss India
Carl Zeiss India
Testo-India
Testo-India
Maco-c
Maco-c
Andreas
Andreas
Vulcan Rubber
Vulcan Rubber
SCHMALZ
SCHMALZ
Sun Lub Technologies
Sun Lub Technologies
Mallcom
Mallcom
igus
igus
Harting India
Harting India
Delta Electric
Delta Electric
Kemppi india
Kemppi india
Kumbhojkar plastic moulders
Kumbhojkar plastic moulders
Ravik Engineers Private Limited
Ravik Engineers Private Limited
Sdtronics
Sdtronics
Thakoor Maschinen
Thakoor Maschinen
Studer
Studer
Urgo Capital
Urgo Capital
Prostar
Prostar
Dosatron
Dosatron
ENS Oils & Lubricants
ENS Oils & Lubricants
Fagor Automation
Fagor Automation
Super Slides
Super Slides
Precihole
Precihole
Magnets India
Magnets India
Reishauer
Reishauer
ACE Micromatic Group
ACE Micromatic Group
Hosabettu Heavy Machinery LLP
Hosabettu Heavy Machinery LLP
Kistler
Kistler
Triveni Turbines
Triveni Turbines
Profectus
Profectus
Eplan
Eplan
Meiban Engg
Meiban Engg
Grob Group
Grob Group
Silasers
Silasers
Design Cell
Design Cell
Smart Pm
Smart Pm
Ogpnet
Ogpnet
Nicolas
Nicolas
Blum Novotest
Blum Novotest
Ctek
Ctek
Mastercam India
Mastercam India
Crane Bel
Crane Bel
Nakashicnc
Nakashicnc
Ceratizit
Ceratizit
Voltaredox
Voltaredox
RB metrology
RB metrology