Harting
Harting

Do you want to advertise here? Contact us

LMW
LMW

Do you want to advertise here? Contact us

MIT system cuts the energy required for training and running neural networks.
.

MIT system cuts the energy required for training and running neural networks.

By OEM Update Editorial April 30, 2020 12:40 pm

Artificial intelligence has become a focus of certain ethical concerns, but it also has some major sustainability issues.

Last June, researchers at the University of Massachusetts at Amherst released a startling report estimating that the amount of power required for training and searching a certain neural network architecture involves the emissions of roughly 626,000 pounds of carbon dioxide. That’s equivalent to nearly five times the lifetime emissions of the average U.S. car, including its manufacturing.

This issue gets even more severe in the model deployment phase, where deep neural networks need to be deployed on diverse hardware platforms, each with different properties and computational resources.

MIT researchers have developed a new automated AI system for training and running certain neural networks. Results indicate that, by improving the computational efficiency of the system in some key ways, the system can cut down the pounds of carbon emissions involved — in some cases, down to low triple digits.

The researchers’ system, which they call a once-for-all network, trains one large neural network comprising many pretrained subnetworks of different sizes that can be tailored to diverse hardware platforms without retraining. This dramatically reduces the energy usually required to train each specialized neural network for new platforms — which can include billions of internet of things (IoT) devices. Using the system to train a computer-vision model, they estimated that the process required roughly 1/1,300 the carbon emissions compared to today’s state-of-the-art neural architecture search approaches, while reducing the inference time by 1.5-2.6 times.

“The aim is smaller, greener neural networks,” says Song Han, an assistant professor in the Department of Electrical Engineering and Computer Science. “Searching efficient neural network architectures has until now had a huge carbon footprint. But we reduced that footprint by orders of magnitude with these new methods.”

The work was carried out on Satori, an efficient computing cluster donated to MIT by IBM that is capable of performing 2 quadrillion calculations per second. The paper is being presented next week at the International Conference on Learning Representations. Joining Han on the paper are four undergraduate and graduate students from EECS, MIT-IBM Watson AI Lab, and Shanghai Jiao Tong University.

Creating a “once-for-all” network

Advertising

OEM Android App

Your future advertising space? Our media data

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags: News
Webinar
Webinar

Do you want to advertise here? Contact us

OEM Update QR Code
OEM Update QR Code

Events

Clean India Show
Clean India Show
Factory Automation Expo
Factory Automation Expo
India Essen Welding and Cutting Expo
India Essen Welding and Cutting Expo
Logimat India
Logimat India
Metal Forming Expo
Metal Forming Expo

eMagazine November 2024

eMagazine November 2024
eMagazine November 2024

Do you want to advertise here? Contact us

Our Sponsors

DIRAK
DIRAK
Pragati Gears
Pragati Gears
Carl Zeiss India
Carl Zeiss India
STMCNC
STMCNC
Nord
Nord
Messer Cutting
Messer Cutting
Atos Profilo
Atos Profilo
Fronius
Fronius
SCHMALZ
SCHMALZ
Sigma-Weild
Sigma-Weild
Mallcom
Mallcom
igus
igus
DH Secheron Electrodes
DH Secheron Electrodes
Timken India
Timken India
UNP Polyvalves India Pvt Ltd
UNP Polyvalves India Pvt Ltd
ENS Oils & Lubricants
ENS Oils & Lubricants
Super Slides
Super Slides
Autonics
Autonics
Fuel Instruments  Engineers
Fuel Instruments  Engineers
Velvex
Velvex
Universal Orbital
Universal Orbital
Chicago Pneumatic Tools
Chicago Pneumatic Tools
MMC Hardmetal Pvt Ltd
MMC Hardmetal Pvt Ltd
Mennekes
Mennekes
ACD Machines
ACD Machines
TruCut
TruCut
tectyl
tectyl
BKT Tires
BKT Tires
Fibro India
Fibro India
Deceler
Deceler
Balluff
Balluff
Urgo Capital
Urgo Capital
Amsak Cranes
Amsak Cranes
Molygraph
Molygraph
SKS Welding
SKS Welding
pioneer Cranes
pioneer Cranes
Exorint
Exorint
Schmersal India
Schmersal India
Exon mobil
Exon mobil