Harting
Harting

Do you want to advertise here? Contact us

LMW
LMW

Do you want to advertise here? Contact us

System brings deep learning to IoT devices
.

System brings deep learning to IoT devices

By OEM Update Editorial December 7, 2020 2:51 pm

Advance cloud enable artificial intelligence on household appliances while enhancing data security and energy efficiency.

Deep learning is everywhere. This branch of artificial intelligence curates your social media and serves your Google search results. Soon, deep learning could also check your vitals or set your thermostat. MIT researchers have developed a system that could bring deep learning neural networks to new — and much smaller — places, like the tiny computer chips in wearable medical devices, household appliances, and the 250 billion other objects that constitute the “internet of things” (IoT).

The system, called MCUNet, designs compact neural networks that deliver unprecedented speed and accuracy for deep learning on IoT devices, despite limited memory and processing power. The technology could facilitate the expansion of the IoT universe while saving energy and improving data security.

The research will be presented at next month’s Conference on Neural Information Processing Systems. The lead author is Ji Lin, a PhD student in Song Han’s lab in MIT’s Department of Electrical Engineering and Computer Science. Co-authors include Han and Yujun Lin of MIT, Wei-Ming Chen of MIT and National University Taiwan, and John Cohn and Chuang Gan of the MIT-IBM Watson AI Lab.
The Internet of Things
The IoT was born in the early 1980s. Grad students at Carnegie Mellon University, including Mike Kazar ’78, connected a Cola-Cola machine to the internet. The group’s motivation was simple: laziness. They wanted to use their computers to confirm the machine was stocked before trekking from their office to make a purchase. It was the world’s first internet-connected appliance. “This was pretty much treated as the punchline of a joke,” says Kazar, now a Microsoft engineer. “No one expected billions of devices on the internet.”

Since that Coke machine, everyday objects have become increasingly networked into the growing IoT. That includes everything from wearable heart monitors to smart fridges that tell you when you’re low on milk. IoT devices often run on microcontrollers — simple computer chips with no operating system, minimal processing power, and less than one thousandth of the memory of a typical smartphone. So pattern-recognition tasks like deep learning are difficult to run locally on IoT devices. For complex analysis, IoT-collected data is often sent to the cloud, making it vulnerable to hacking.

“How do we deploy neural nets directly on these tiny devices? It’s a new research area that’s getting very hot,” says Han. “Companies like Google and ARM are all working in this direction.” Han is too.

With MCUNet, Han’s group codesigned two components needed for “tiny deep learning” — the operation of neural networks on microcontrollers. One component is TinyEngine, an inference engine that directs resource management, akin to an operating system. TinyEngine is optimized to run a particular neural network structure, which is selected by MCUNet’s other component: TinyNAS, a neural architecture search algorithm.

System-algorithm codesign
Designing a deep network for microcontrollers isn’t easy. Existing neural architecture search techniques start with a big pool of possible network structures based on a predefined template, then they gradually find the one with high accuracy and low cost. “It can work pretty well for GPUs or smartphones,” says Lin. “But it’s been difficult to directly apply these techniques to tiny microcontrollers, because they are too small.”

So Lin developed TinyNAS, a neural architecture search method that creates custom-sized networks. “We have a lot of microcontrollers that come with different power capacities and different memory sizes,” says Lin. “So we developed the algorithm [TinyNAS] to optimize the search space for different microcontrollers.” The customized nature of TinyNAS means it can generate compact neural networks with the best possible performance for a given microcontroller — with no unnecessary parameters. “Then we deliver the final, efficient model to the microcontroller,” say Lin.

Advertising

OEM Android App

Your future advertising space? Our media data

Written by
Daniel Ackerman
Massachusetts Institute of Technology

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags: Innovation
Webinar
Webinar

Do you want to advertise here? Contact us

OEM Update QR Code
OEM Update QR Code

Events

Clean India Show
Clean India Show
Factory Automation Expo
Factory Automation Expo
India Essen Welding and Cutting Expo
India Essen Welding and Cutting Expo
Logimat India
Logimat India
Metal Forming Expo
Metal Forming Expo

eMagazine November 2024

eMagazine November 2024
eMagazine November 2024

Do you want to advertise here? Contact us

Our Sponsors

DIRAK
DIRAK
Pragati Gears
Pragati Gears
Carl Zeiss India
Carl Zeiss India
STMCNC
STMCNC
Nord
Nord
Messer Cutting
Messer Cutting
Atos Profilo
Atos Profilo
Fronius
Fronius
SCHMALZ
SCHMALZ
Sigma-Weild
Sigma-Weild
Mallcom
Mallcom
igus
igus
DH Secheron Electrodes
DH Secheron Electrodes
Timken India
Timken India
UNP Polyvalves India Pvt Ltd
UNP Polyvalves India Pvt Ltd
ENS Oils & Lubricants
ENS Oils & Lubricants
Super Slides
Super Slides
Autonics
Autonics
Fuel Instruments  Engineers
Fuel Instruments  Engineers
Velvex
Velvex
Universal Orbital
Universal Orbital
Chicago Pneumatic Tools
Chicago Pneumatic Tools
MMC Hardmetal Pvt Ltd
MMC Hardmetal Pvt Ltd
Mennekes
Mennekes
ACD Machines
ACD Machines
TruCut
TruCut
tectyl
tectyl
BKT Tires
BKT Tires
Fibro India
Fibro India
Deceler
Deceler
Balluff
Balluff
Urgo Capital
Urgo Capital
Amsak Cranes
Amsak Cranes
Molygraph
Molygraph
SKS Welding
SKS Welding
pioneer Cranes
pioneer Cranes
Exorint
Exorint
Schmersal India
Schmersal India
Exon mobil
Exon mobil