LMW
LMW

Do you want to advertise here? Contact us

OEM Play Store
OEM Play Store

Do you want to advertise here? Contact us

Shoe grinding: Highest precision for thin-walled workpieces
.

Shoe grinding: Highest precision for thin-walled workpieces

By November 12, 2017 12:53 pm IST

STUDER shoe grinding fixture in the S41 work area

Do you have the highest requirements on the roundness of thin-walled rings and sleeves or a rolling element raceway, whose surface-profile shape must be extremely precise, so that the rolling element can offer an extended service life or external and internal machining in a single clamping, so that these rings can also be produced economically? STUDER has the answer and knows the necessary manufacturing process: Cylindrical grinding with a shoe grinding fixture, or in short: Shoe grinding! With this method STUDER achieves accuracies which remain unattainable with the conventional grinding process.

The shoe grinding principle
The thin-walled, circular workpiece, the roller bearing ring, must be clamped so that it cannot be deformed and so that absolute concentricity from external diameter to internal diameter is already assured by the clamping system.
These requirements are not met by a jaw chuck (3-, 6-jaw chuck). In addition, the complete external contour and the internal contour should preferably be machined in one clamping. A magnetic chuck clamping generally means that each individual workpiece must be centrically aligned manually using a dial indicator, which not only takes a great deal of time but also makes automatic loading impossible. This last point in particular proves to be a major obstacle in the mass production required in the roller bearing industry.
The best way to clamp a thin-walled ring is to use a method which completely separates the workpiece support from the rotary drive (workpiece drive):
• Shoe grinding fixture, for supporting the workpiece
• Electromagnetic chuck for torque introduction (drive) and fixing the workpiece.

Design of shoe grinding fixtures
In the picture below showing a universal shoe grinding fixture the workpiece has been intentionally omitted, to make the design clearer.
• Shoe grinding fixture clamped to workpiece table, movable in Z-direction.
• Horizontal supporting shoe in oscillating shoe design, with universal sliding inserts with fine adjustment.
• Vertical supporting shoe in fixed shoe design, with universal sliding inserts with fine adjustment.
• Electromagnetic chuck for introduction of the workpiece rotary movement and for fixing the workpiece, here with radial pole pitch.

Advertising

OEM Android App

Your future advertising space? Our media data

Design of the electromagnetic chuck
The electromagnetic chuck drives the workpiece in the direction of rotation, thus generating the workpiece speed. The chuck also holds the workpiece in its nominal position, as it lies against the front surface of the workpiece. A small relative movement takes place here between chuck (pole booster, pole ring) and workpiece end surface, as the supporting shoes position the workpiece eccentrically: Annular pole or radial pole pitches are selected depending on the workpiece size, with the annular pole pitch tending to be used for smaller workpieces (up to approx. 80mm).

Annular pole electromagnets can have different mounting hole patterns, which match a customer’s product range. The driving or holding force of the electromagnetic chuck can be programmed in many different stages. The holding force can thus be temporarily reduced for particularly delicate operations via CNC program, enabling stronger clamping afterwards in the same program. The magnetic force can be individually programmed in up to 16 stages on the magnet controller. If several different electromagnetic chucks have to be used, the electrical connection is provided by plug-in contacts directly behind the chuck.

Possible grinding head configurations
The top priority is to finish-grind a roller bearing ring externally and internally: perfect concentricity externally/internally; same manufacturing temperature, so more dimensionally stable; reduction of quantity of “work in progress” (working capital) etc. The grinding head should therefore be equipped with the grinding tools required for the complete process: external grinding wheel(s), internal grinding wheel(s), measuring probe. And naturally on an infinitely variable, high-precision B-axis with a swivel angle repetition accuracy of < 1-inch (for STUDER S41). Achievable accuracies
The following table provides information on what can be achieved with a shoe grinding fixture on a STUDER cylindrical grinding machine. These values have been confirmed in various customer projects and internal trials, but the blanks on the system side (frontal surface left) must be perfectly flat.

For more information, visit www.studer.com

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags:
Webinar
Webinar

Do you want to advertise here? Contact us

Autodesk
Autodesk
Trucut
Trucut
OEM Update QR Code
OEM Update QR Code

Events

Logimat India
Logimat India
Metal Forming Expo
Metal Forming Expo
ChemProTech India 2025
ChemProTech India 2025
Aerodef India Manufacturing Expo
Aerodef India Manufacturing Expo

eMagazine December 2024

eMagazine December 2024
eMagazine December 2024

Do you want to advertise here? Contact us

Our Sponsors

Carl Zeiss India
Carl Zeiss India
STMCNC
STMCNC
Maco-c
Maco-c
Inovance Technology
Inovance Technology
Mallcom
Mallcom
igus
igus
Delta Electric
Delta Electric
Wago Pvt Ltd
Wago Pvt Ltd
Studer
Studer
Urgo Capital
Urgo Capital
Prostar
Prostar
Super Slides
Super Slides
Quality Spares Center
Quality Spares Center
Endress Hauser
Endress Hauser
ACE Micromatic Group
ACE Micromatic Group
Hosabettu Heavy Machinery LLP
Hosabettu Heavy Machinery LLP
Ceratizit
Ceratizit
Chicago Pneumatic Tools
Chicago Pneumatic Tools
Concord Hydraulics
Concord Hydraulics
MMC Hardmetal Pvt Ltd
MMC Hardmetal Pvt Ltd
Mennekes
Mennekes
TruCut
TruCut
Voestalpine
Voestalpine
tectyl
tectyl
LMW
LMW
BKT Tires
BKT Tires
Mitsubishi Materials
Mitsubishi Materials
Molygraph
Molygraph
Fietest
Fietest
Exorint
Exorint
Exon mobil
Exon mobil
Wika Instruments India
Wika Instruments India