LMW
LMW

Do you want to advertise here? Contact us

Imtex
Imtex

Do you want to advertise here? Contact us

Cryptographic tag shows potential to protect supply chain
.

Cryptographic tag shows potential to protect supply chain

By March 3, 2020 6:29 pm IST

Tiny, battery-free ID chip can authenticate nearly any product to help combat losses to counterfeiting.

To combat supply chain counterfeiting, which can cost companies billions of dollars annually, MIT researchers have invented a cryptographic ID tag that is small enough to fit on virtually any product and verify its authenticity.

A 2018 report from the Organization for Economic Co-operation and Development estimates that about $2 trillion worth of counterfeit goods will be sold worldwide in 2020. That is bad news for consumers and companies that order parts from different sources worldwide to build products.

Counterfeiters tend to use complex routes that include many checkpoints, making it challenging to verifying their origins and authenticity. Consequently, companies can end up with imitation parts. Wireless ID tags are becoming increasingly popular for authenticating assets as they change hands at each checkpoint. But these tags come with various trade-offs related to size, cost, energy, and security that limit their potential.

Popular radio-frequency identification (RFID) tags, for instance, are too large to fit on tiny objects such as medical and industrial components, automotive parts, or silicon chips. RFID tags also contain no tough security measures. Some tags are built with encryption schemes to protect against cloning and ward off hackers, but they are large and power hungry. Shrinking the tags means giving up both the antenna package — which enables radio-frequency communication — and the ability to run strong encryption.

In a paper presented at the IEEE International Solid-State Circuits Conference (ISSCC), the researchers describe an ID chip that navigates all those trade-offs. It is millimetre-sized and runs on relatively low levels of power supplied by photovoltaic diodes. It also transmits data at far ranges, using a power-free “backscatter” technique that operates at a frequency hundreds of times higher than RFIDs. Algorithm optimisation techniques also enable the chip to run a popular cryptography scheme that guarantees secure communications using extremely low energy.

“We call it the ‘tag of everything’. And everything should mean everything,” says co-author Ruonan Han, an associate professor in the Department of Electrical Engineering and Computer Science and head of the Terahertz Integrated Electronics Group in the Microsystems Technology Laboratories (MTL). “If I want to track the logistics of, say, a single bolt or tooth implant or silicon chip, current RFID tags don’t enable that. We built a low-cost, tiny chip without packaging, batteries, or other external components that stores and transmits sensitive data.”

Joining Han on the paper are: graduate students Mohamed I. Ibrahim, Muhammad Ibrahim Wasiq Khan, and Chiraag S. Juvekar; former postdoc associate Wanyeong Jung; former postdoc Rabia Tugce Yazicigil; and Anantha P. Chandrakasan, who is the dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science.

System integration
The work began as a means of creating better RFID tags. The team wanted to do away with packaging, which makes the tags bulky and increases manufacturing cost. They also wanted communication in the high terahertz frequency between microwave and infrared radiation — around 100 gigahertz and 10 terahertz — that enables chip integration of an antenna array and wireless communications at greater reader distances. Finally, they wanted cryptographic protocols because RFID tags can be scanned by essentially any reader and transmit their data indiscriminately.

But including all those functions would normally require building a fairly large chip. Instead, the researchers came up with “a pretty big system integration,” Ibrahim says, that enabled putting everything on a monolithic — meaning, not layered — silicon chip that was only about 1.6 square millimetres.

Advertising

OEM Android App

Your future advertising space? Our media data

Pushing the limits
Currently, the signal range sits around 5 cm, which is considered a far-field range, and allows for convenient use of a portable tag scanner. Next, the researchers hope to “push the limits” of the range even further, Ibrahim says. Eventually, they’d like many of the tags to ping one reader positioned somewhere far away in, say, a receiving room at a supply chain checkpoint. Many assets could then be verified rapidly.

“We think we can have a reader as a central hub that doesn’t have to come close to the tag, and all these chips can beam steer their signals to talk to that one reader,” Ibrahim says.

The researchers also hope to fully power the chip through the terahertz signals themselves, eliminating any need for photodiodes. The chips are so small, easy to make, and inexpensive that they can also be embedded into larger silicon computer chips, which are especially popular targets for counterfeiting.

“The US semiconductor industry suffered $7 billion to $10 billion in losses annually because of counterfeit chips,” Wasiq Khan says. “Our chip can be seamlessly integrated into other electronic chips for security purposes, so it could have huge impact on industry. Our chips cost a few cents each, but the technology is priceless,” he quipped.

For more information, contact:
Rob Matheson,MIT News Office
http://news.mit.edu/

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags: Case Study
Webinar
Webinar

Do you want to advertise here? Contact us

Autodesk
Autodesk
OEM Update QR Code
OEM Update QR Code

Events

Bharat Mobility Global Expo- The Components Show
Bharat Mobility Global Expo- The Components Show
Logimat India
Logimat India
Hannover Messe 2025
Hannover Messe 2025
Diemex
Diemex
Metal Forming Expo
Metal Forming Expo
ChemProTech India 2025
ChemProTech India 2025
Aerodef India Manufacturing Expo
Aerodef India Manufacturing Expo
Wiretech 2025
Wiretech 2025
India Manufacturing Show
India Manufacturing Show

eMagazine January 2025

eMagazine January 2025
eMagazine January 2025

Do you want to advertise here? Contact us

Our Sponsors

Bluestar
Bluestar
Pragati Gears
Pragati Gears
Pilz India
Pilz India
Carl Zeiss India
Carl Zeiss India
Testo-India
Testo-India
Maco-c
Maco-c
Andreas
Andreas
Vulcan Rubber
Vulcan Rubber
SCHMALZ
SCHMALZ
Sun Lub Technologies
Sun Lub Technologies
Mallcom
Mallcom
igus
igus
Harting India
Harting India
Delta Electric
Delta Electric
Kemppi india
Kemppi india
Kumbhojkar plastic moulders
Kumbhojkar plastic moulders
Ravik Engineers Private Limited
Ravik Engineers Private Limited
Sdtronics
Sdtronics
Thakoor Maschinen
Thakoor Maschinen
Studer
Studer
Urgo Capital
Urgo Capital
Prostar
Prostar
Dosatron
Dosatron
ENS Oils & Lubricants
ENS Oils & Lubricants
Fagor Automation
Fagor Automation
Super Slides
Super Slides
Precihole
Precihole
Magnets India
Magnets India
Reishauer
Reishauer
ACE Micromatic Group
ACE Micromatic Group
Hosabettu Heavy Machinery LLP
Hosabettu Heavy Machinery LLP
Kistler
Kistler
Triveni Turbines
Triveni Turbines
Profectus
Profectus
Eplan
Eplan
Meiban Engg
Meiban Engg
Grob Group
Grob Group
Silasers
Silasers
Design Cell
Design Cell
Smart Pm
Smart Pm
Ogpnet
Ogpnet
Nicolas
Nicolas
Blum Novotest
Blum Novotest
Ctek
Ctek
Mastercam India
Mastercam India
Crane Bel
Crane Bel
Nakashicnc
Nakashicnc
Ceratizit
Ceratizit
Voltaredox
Voltaredox
RB metrology
RB metrology