LMW
LMW

Do you want to advertise here? Contact us

Imtex
Imtex

Do you want to advertise here? Contact us

Reflecting on the Past to Advance the IIoT
.

Reflecting on the Past to Advance the IIoT

By August 12, 2016 4:20 pm IST

Whenever we can take a moment to reflect, it is possible to find patterns that can help clarify future projections. One such pattern can be seen in the preservation of infrastructure value associated with the four previous industrial revolutions.
Historically, the idea of extending the lifespan of equipment in industrial applications is not a new or marvel concept. As in the past, leveraging existing equipment not only saves money, but can also strengthen a company’s foundation.
Industry, as it is currently understood, began with the first industrial revolution (~1780 -1840), which involved the migration from piecemeal production by hand to machine-assisted production. This change was pushed by readily available energy from water and steam to power factory machines and tools.
These initial advancements were followed by the second industrial revolution (~1870 -1914), which introduced newer technology and electric power sources to factories. By providing round-the-clock light, electricity enabled more continuous manufacturing, allowing workers to produce goods during the day and night. Much of the equipment from the first industrial revolution, however, was still functional and in operation. Rather than replace working machinery, it was simply retrofitted with electric engines in place of steam-driven versions. This required only nominal investments to extend equipment lifespan while still benefiting from the increased capabilities of consistently available grid power.
The third industrial revolution (~1947-2010), more popularly referred to as the Digital Revolution, traces its roots to the invention of the transistor. The transistor enabled the development of computers that spread to factory floors in the form of automation equipment to support manufacturing goals of waste reduction and production enhancement. While the automation of factory equipment increased production efficiency, it also required the purchase and implementation of vast amounts of new tools and machinery. These additions enabled factories to once again take production to the next level by further increasing output and reducing loss. Production began occurring in manufacturing cells with local control and monitoring. Maximising efficiency of a single step within production required workers to supervise certain aspects of machine operation, such as watching over machine resources and monitoring equipment status.
The current or fourth industrial revolution – the Industrial Internet of Things (IIoT) – is once again focused on refining processes to reduce waste and downtime by connecting all aspects of the supply chain to enable data communication between deployed equipment and processes. Where the Digital Revolution enabled the automation of production, the fourth revolution focuses on coalescing and connecting the vast amounts of data currently spread throughout organisations. Extracting data from existing equipment provides operational intelligence and visibility to increase production efficiency and reduce the time-to-market for produced goods.

Advertising

OEM Android App

Your future advertising space? Our media data

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags:
Autodesk
Autodesk
OEM Update QR Code
OEM Update QR Code

Events

Logimat India
Logimat India
Hannover Messe 2025
Hannover Messe 2025
Diemex
Diemex
Metal Forming Expo
Metal Forming Expo
ChemProTech India 2025
ChemProTech India 2025
Aerodef India Manufacturing Expo
Aerodef India Manufacturing Expo
Wiretech 2025
Wiretech 2025
India Manufacturing Show
India Manufacturing Show

eMagazine January 2025

eMagazine January 2025
eMagazine January 2025

Do you want to advertise here? Contact us

Our Sponsors

Bluestar
Bluestar
Pragati Gears
Pragati Gears
Pilz India
Pilz India
Carl Zeiss India
Carl Zeiss India
Testo-India
Testo-India
Maco-c
Maco-c
Andreas
Andreas
Vulcan Rubber
Vulcan Rubber
SCHMALZ
SCHMALZ
Sun Lub Technologies
Sun Lub Technologies
Mallcom
Mallcom
igus
igus
Harting India
Harting India
Delta Electric
Delta Electric
Kemppi india
Kemppi india
Kumbhojkar plastic moulders
Kumbhojkar plastic moulders
Ravik Engineers Private Limited
Ravik Engineers Private Limited
Sdtronics
Sdtronics
Thakoor Maschinen
Thakoor Maschinen
Studer
Studer
Urgo Capital
Urgo Capital
Prostar
Prostar
Dosatron
Dosatron
ENS Oils & Lubricants
ENS Oils & Lubricants
Fagor Automation
Fagor Automation
Super Slides
Super Slides
Precihole
Precihole
Magnets India
Magnets India
Reishauer
Reishauer
ACE Micromatic Group
ACE Micromatic Group
Hosabettu Heavy Machinery LLP
Hosabettu Heavy Machinery LLP
Kistler
Kistler
Triveni Turbines
Triveni Turbines
Profectus
Profectus
Eplan
Eplan
Meiban Engg
Meiban Engg
Grob Group
Grob Group
Silasers
Silasers
Design Cell
Design Cell
Smart Pm
Smart Pm
Ogpnet
Ogpnet
Nicolas
Nicolas
Blum Novotest
Blum Novotest
Ctek
Ctek
Mastercam India
Mastercam India
Crane Bel
Crane Bel
Nakashicnc
Nakashicnc
Ceratizit
Ceratizit
Voltaredox
Voltaredox
RB metrology
RB metrology